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§1 Introduction. Let p,y,p denote the fluid pressure,

velocity, and density. Our starting point is the Eulerian equations
of motion

Jdu

~ 1 _
ST + (E.grad)g + B-grad;> =0 (1.1)
9 .
SE-+ (g.grad)p + yp divay = 0 (1.2)
pp~Y = constant |, (1.3)

where Y 1is a ratio of specific heats. The particular case of
interest in this paper is the acoustic disturbance about a mean

flow p , where the pressure has the form

u
o’~o’ po

P=p,+e P , |p/p,IK1. (1.4)

Assuming for example the mean flow is uniform and neglecting

quadratic terms we obtain the following:

I
o .

iru + 1 grad p

(1.5)
Ypodiv u + irp =0 (1.6)

These equations are required to hold in the flow region 1 with
linear combinations of the pressure and normal velocity being

specified on the boundary TI; say
o u-y+ Bp = 6 on T, (1.7)

where Vv denotes the outer normal.
The goal of this paper is to analyze Galerkin or mixed

variational approximations to the first order system (1.5)-(1.6).




i,

At first glance such an approach may seem to be inferior to a
discretization of (1.5)-(1.7) based on a least squares principle
[1]. The primary reason for this is that in the least squares

approach one can obtain second order accuracy in L for both

2
u and p by using appropriate piecewise linear spaces for each.
Such a combination, however, will be unstable in the Galerkin for-
mulation ([2]~[4]). 1In the latter one typically uses an appropriate
piecewise linear space for u and a piecewise constant space for

pP. The degrees of freedom in the latter are virtually the same as

in the least squares formulation for a comparable grid, yet

yield only first order L, accuracy in p;

Two sqmewhat surprising results of the analysis in this paper
offer hope, however, for the utility of the Galerkin approach.
First we show that under suitable conditions one has superconver-
gence in the approximation to the pressure. For example, if Sh
denotes the best L approximation to p in a suitable space of

2

piecewise constant functions, then we show that the L, error

th - sh“o in the Galerkin}approximation P, 1is actually second

order if appropriate linear elements are used for the velocity u.
Second and of equal importance, the errors in the Galerkin

approach do not deteriorate as rapidly when the frequency r

increases. This is of particular importance in underwater acoustics

where

r>>1

is quite common ([5].
This second property is also shared by the standard finite

element formulation where (1.5) is differentiated and combined
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with (1.6) to give the Helmholtz equation
AP + wp = 0, (1.8)

and the Galerkin method is applied directly to (1.8). So long

as the coefficients po from the mean flow are smooth this

Pysly:
approach is possibly preferable; however in many applications these
coefficients come from measurements and are not smooth enough to
be differentiated [1l]. In such cases one must deal directly with

a first order system like (1.5)-(1.6). '

Previous work on Galerkin approximations has centered on the

Poisson equation

el
1
le]
H
]
o7
S
1
@)

(1.9)
div u = f. (1.10)

Let ﬁh denote the finite dimensional space of velocities and
gh the finite dimensional space of pressures. Brezzi [3j showed

that optimal convergence in the norms
lsllg = Nl Nully = g2 + lasv g)2y¥/20) (1.11)

will occur provided
f&divg

B NI

> allvlly a1l wesh (1.12)

holds for a fixed a,0<alco, independent of h, where the sup

is taken over all ¥ in kh. There are a variety of spaces
satisfying this condition including piecewise linear functions on
a suitable grid for the velocities and suitable piecewise constants
for the pressure [6]. This combination gives first order accuracy

in the mesh spacing h in the norms (1.11). These results are

alized in Section 3 for the acoustic equations.
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In subsequent work ([2],[4]) on the Poisson equation it was shown

that optimal accuracy in the norms

el > Wl (1.13)

can be obtained under appropriate conditions. In particular,

one needs the inclusion property

8P — aiviV? (1.14)

as well as a decomposition property. The latter states there

is an q, 0<aKoo, independent of h such that each Xhebh can

be written

Yh = ¥ * Zpe (1.15)

where W, .z, in ﬁh satisfy
divg, =0, a\\gh‘ﬂo < laiv Zh“-l . (1.16)

In many mixed finite element formulations the analogs of
(1.14)-(1.16) and (1.12) are equiwvalent ([7]). In this setting
they are not. In fact, one can show that in this case (1.12) is
equivalent to an inclusion and decomposition property but with dif-
ferent norms in (1,16) [7]. Nevertheless the finite element
spaces which are known to satisfy (1.14)-(1.16) also satisfy
(1.12) and conversely ([4]). 1In Section 4 we generalize the
error estimates using (1.14)-(1.16) to cover the acoustic equations.
The most important aspect of this analysis is the superconvergence

in the pressure p.




$§2 The Galerkin formulation. For simplicity we consider

the boundary value problem

u-grad o = £ in 0 (2.1)
divu +wp=9g in Q (2.2)
o =0 on T (2.3)

The mixed variational formulation of this problem is based on
Galerkin's method and takes the following form. Given £OeL2(h),

goeLz(O) find

uyev = H(divi0)*, g €8 = L7(Q) (2.4)

such that
a(u,,v) + b(y,e,) = (£,,¥) (2.5)
b(uy,b) + clogy,d) = <g,,d> | (2.6)

holds for all veV, Pe3. The forms are defined as follows:

~

a(@,v) = (0,y) = | m-w, bl =[] wvaivy (2.7
Q |

clo,) = [ wor  <ay> = [ oy (2.8)




To approximate we introduce finite dimensiona?! spaces

shcs, WVev (2.9)

and seek ghekh, &hesh such that (2.5)-(2.6) holds (with Y,

replaced with uy and 9 replaced with gh) for all xekh,
wegh.

It may happen that (2.1)-(2.3) does not have a unique solu-
tion, a case which arises for example if @ is an eigenvalue of
the homogeneous problem. We explicitly rule this out by assuming that
the adjoint equation (which in this case is the same as (2.1)-(2.3))
is uniquely solvable. More precisely, we assume that for each

A
pair SeH(div,Q),éeLz(Q) there us a unique pair Qek, $68 for

which
a(w,9) + b(yz:fl}) = (,’f:,y) (2.11)
b(9,6) + c(£,§) = <g,0> (2.12)

holds for all wel, €e8. Moreover, we assume that the solution
of (2.11)-(2.12) satisfies the standard apriori bound for the

Helmholtz equation
ad + b = § - aiv &.
Namely,
g, S K, (lgh_, + \{ﬁtlo) (2.13)

The constant K, approaches infinity with Viel .




The effect of the frequency w in our analysis will also be seen

in the constant 0 < K, < o© satisfying

~ leto,9) | 2 % Hollgllelly a1l w,ves (2.14)

For the model problem (2.1)-(2.3) we can take Kl = w, In the

general acoustic equations it will be a more complicated func-

tion of ®w Dbut will still approach infinity linearly with w.
As noted in the introduction the case w®w = 0 has received

considerable attention. We shall use this work to define a mapping

from UXS to Uhxsh - called the Poisson projector Ph -- as fol-
lows. We let
(8,8, = 28,8
when
aw’,9,) + blwe) = a@™d + bly,d) (2.15)
b(d,EM = b(E, (2.16)

A A
holds for all ghehh, Ehesh. That is [xh,¢h] is the mixed finite

A A
element approximation to the Poisson equation generated by [X,g}.
If Brezzi's condition (1.12) holds, then there is a constant
. 0 < Ca < oo, depending only on the number o in (1.12) such

that

18 - 2l + laive® - &) U+ W, - 0, S ez &d, @an




where

£ (3 = ing ()% - WPl +Naivd - W+ 1 - Pl (2018

and where the inf is taken over 3heu, §h€Sh. (see [3])

Similarly if the inclusion and decomposition properties

(1.14)-(1.16) hold, then
Iy - &, S c B, (©) (2.19)
and
1 - 30, < Cc,[(EO(r%O) +Eg()1, (2.20)

where

A

Eo(v

h
o) I

= inf g - w",, E (D) = inf I} - ¢ (2.21)

o.
and now C(1 depends on the constant qa in (1.16) (See’'([4]).
Throughout this paper we shall assume that the spaces Uh,

Sh

have the standard approximation properties. More precisely,
we assume that we can approximate in Uh to order k in the sense

that given weH<(0)

h“

inf (|ly - WPl + nlg - w3 S ¢ n¥ull, (2.22)

for a fixed constant O < Ca < oo independent of w and h.
Moreover, we assume (2.22) holds for k replaced with any smaller

ky»satisfying 1 < kg < k. Similarly, we assume that for any




gen® (Q)

inf [|lg - P 1 S cAh*'nguL (2.23)

e
~

with this inequality holding for 1 replaced with any Ll satis-
fying 0 < Ll < 4. For most spaces satisfying the Brezzi condi-
tion (1.12) or the inclusion condition (1.14) we have 4 =k - 1.

Observe that if (2.22)-(2.23) hold, then
k-1 1
El(z’g) = O(h ) + O(h )
while

g) = o(nh)

Eow) = o(h"),  E(s

provided wer(Q), EeﬁL(O).
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§3 The first error estimates. In this section we assume

that Brezzi's condition (1.12) is valid, and estimate the errors
Uy - Yy P = ¥n° The proof that the discrete system (2.5)-(2.6)

on UM'xsP has a unique solution is similar in structure

he®h

to the error analysis so we shall give only the latter. Also
we shall assume that the regularity (2.13) and approximability condi-

tions' (2.22)-(2.23) hold.

Theorem 7. Let (1.12) hold. Then there is a constant
0 < C< oo depending only on a in (1.12) and w such that

if hC € 1, then
- S <
lay - mplly + oy - e lly 2 GZeg) By (@o020) (3.1)
- » L3 . . 3/2
Moreover, C approaches infinity linearly with lw] .
Proof. Let

B((u,0),(v,d)) = 2(u,¥) + b(y,9) + b(u,d) + clw,d). (3.2)

Then the defining equations (2.5)-(2.6) give

h_ h
B((uy,0) 5 (¥50™) = B((ggs00), (g 8M) (3.3)
for all yPa®, lesP. rpet
AA h_qh
(1, 0, Jeu %8

be given and put
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A A

Sh T 2n " S e =4, - 4, (3.4)
A : A

“h = ®h " % €T % T % (3.5)

Subtracting AB((gh,¢h),(zh,$h)) from both sides of. (3.3) gives
B((sh9€h)’(xh:¥’h)) = B((gxe),(xh:lbh)) . (3.5)

. Let us first estimate the left hand side of (3.4), and in

the process make a definite choice for xh

and ¢h. The idea

is to choose these functions so that the left hand side becomes
essentially “Sh“% + “eh“g; To do this we first solve the adjoint
problem (2.11)-(2.12) with data £ = en:9 = €y Letting w = &,

and E = ¢ in (2.11)-(2.12) gives

h
Bleper) 5 (8,0 = llgg s + lleyllz. (3.6)

Since B(-,*) is linear in each variable it follows from (3.5) that

ey l2 + Nepli2 = Bllgyoey)» @ - YN8 - 8™ + Blg, o), ("™ (3.7)

A . . .
We now let {Xh’wh} = {Qh’¢h] be the Poisson projection of [ﬁh,ﬁ)),

i.e., (2.15)-(2.16) holds. Thus putting ﬂh = &, §h = €y in

(2.15)-(2.16) we get
(e, - 8) + bR - & ,ep) + bl %) =0, (3.8

Thus

AN A N N A
B((eprep) s (¥ - Yot - dp)) = cleg,d - Pp), (3.9)
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and so

A .
leId + Ney 2 = cte,d - By + Bl(g,e), (L0 (3.10)

We treat the second term on the right hand side of (3.10) in a
A
similar way. In particular, we let {uh,éh] be the Poisson pro-

jection of {uo,go}. This gives

A A A
ale,y,) + ble,d,) + b(¥,,€) = 0, (3.11)
and so
A A A
B((g,€), (Vy,50y)) = c(s,d,). (3.12)

Combining this with (3.10) we obtain
A A N
leps + NephZ = et - ) + e,y (3.13)

To estimate the first term on the right hand side of (3.13)

we note that (2.14) gives

NN < v tia A A
lC(€h,$’J -~ ),bh)l = Klii:hnoub,_— d;h“ot (3.14)
Our approximation assumption (2.23) gives
A A v A
1 - B ll, € cun B8y (3.15)

The regularity (2.13) of (2.11)-(2.12) can be used to bound $

in terms of the data Sho€y as follows:

H@“ < K. (e, i .+ ; M) (3.16)
"l T B ltEy s =h o )
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Thus

IC(eh,$ - th)l < KoK Cph(le, o+ e o) fleg Wl (3.17)

The second term on the right hand side of (3.13) is treated

in a similar way. In particular,
lete, ) | S rytet (18 - B0, + 1))
$ Ky lellg(xy + ) dlleylly + Neylig)  (3.18)
Combining (3.17)-(3.18) with (3.13) we obtain (3.1).

Remark. The linear dependence on }w!3/2 in the error estimates
is an order of magnitude better than that obtained for the least
sguares approximation, where the dependence is quadratic.

The order of accuracy for a fixed w is not best possible.

For example, if the standard linear element - piecewise constant
combination is used (i.e., k= 2 and < = 1), then we get only

first order accuracy in u and

B, ¢, as in [3] and [6]..
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§4 Improved estimates. In this section we assume that the

inclusion and decomposition properties {1.14)-(1.16) hold, and
show that the L2 errors in u, are best possible.. Moreover,
we show that a superconvergence result holds for the scalar @
The starting point is to prove the latter result for the Poisson

projection, and then using the approcach of the previous section

show that it also holds for w # 0.

Lemma 1. Let [ﬁh’$h] be the Poisson projection of {§,$]

defined by (2.15)-(2.16), and let ?p‘h be the best L, approxi-
mation to % in Sh. Then

A — A

I8y, - Bl & (c /mEL @) (4.1)

Remark., If %h consists of piecewise constant functions,
then the value of Eﬁ is a given triangle T is equal to the
average of $ over T. The above estimate states that this func-
tion will differ from the Poisson projection by order O(hz) if

linear elements are used to represent u,, Or by -ordexr 0(h3) if

h

quadratic elements are used, to cite another popular combination.

Proof. Subtracting $h in the right and left hand sides

of (2.15) gives

A — A A A —_
b, - T = atgLy - 8 + bg™d - T (4.2)

for all x?%kh. We use the inclusion property (1.14) to write
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{?)'h - %y = div g (4.3)

for xhebh. In addition, we use the decomposition property

(1.15)-(1.16) to write
h
ih T zh + &n’ ﬂh,ghEU s (4.4)
where
div g, =0,  allgl S laiv g S I3, - Byl (4.5)
Let W= W in (4.2). Then
b (w0 - By) = J v mdy, -5 - [ Gy -)? e

Also, since Eh is the best L approximation

2

P - B = [ @ivep g -3 - (4.7)

(since div xhesh, by inclusion property). Thus, using (2.19) and

(4.5), (4.2) becomes

13, - T2

n
o

[
&
3
b‘v
L
5
o
L]
55>
o

Cancellation of the common factor gives (4.1).
To apply this result to the case w # 0, we retain the approach

of Section 3 except giving an alternate estimate for the term
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c(e,¢h). To treat the latter we note that
A A LA
C(€ ,d)h) = ‘[n w((po - Qh) l’)h, (4 .8)

A A . . . —_
where {u ,mh] is the Poisson projector of [go,mo]. Let @

denote the best L2 approximation to 9, in Sh, Then

cle,f) = In wloy - o) by, + jn wley, - 8080, (4.9

Assuming that w is constant we have

J utoo @, - o, (4.10)

since 99 ~ % is orthogonal to Sh. Thus

lete, 8015 I - Tl I 0 (4.11)
h 1"%%h o0'"“ho

Estimating the last term on the right of (4.11l) as in (3.18) we

obtain the following result.

Theorem 2. Let the inclusion and decomposition properties
(1.14)-(1.16) and assume ®w is a constant. There is a 0 < C << @

depending only on a in (1.16) and w such that if Ch < 1, then

oy - w o + oy -oplly & (Toam) By (2o) s (4.12)

where oy, is the best L, approximation to N in Sh.
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